
A COMPLICATED AND IMPRESSIVE SOUNDING TITLE THAT IS TOO LONG

FOR A SINGLE LINE WHILE INCLUDING EVERYTHING

by

John Q. Engineer

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Richard P. Feynmann, Ph.D. Robert L. Forward, Ph.D.
Major Professor Committee Member

Albert Einstein, Ph.D. Gottfried Liebniz, Ph.D.
Committee Member Committee Member

Isaac Newton, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2021

ii

Copyright c© John Q. Engineer 2021

All Rights Reserved

iii

ABSTRACT

A Complicated and Impressive Sounding Title that is Too Long For a Single Line While

Including Everything

by

John Q. Engineer, Doctor of Philosophy

Utah State University, 2021

Major Professor: Richard P. Feynmann, Ph.D.
Department: Electrical and Computer Engineering

This is the abstract of the demonstration thesis. Hopefully the examples will be suf-

ficiently clear that you will have few formatting problems. The Graduate School requires

that the abstract be 350 words or less, so be careful of the length of the abstract.

(34 pages)

iv

PUBLIC ABSTRACT

A Complicated and Impressive Sounding Title that is Too Long For a Single Line While

Including Everything

John Q. Engineer

The public abstract is to convey the purpose of the research to the PUBLIC, so layman’s

terms should be used.

v

To all the little people....

vi

ACKNOWLEDGMENTS

I am so happy that my advisor helped me.....

John Q. Engineer

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . x

1 INTRODUCTION . 1
1.1 Background . 1

2 RESIDUAL VECTOR QUANTIZATION AND ITS PROBLEMS 5
2.1 Residual Vector Quantization (RVQ) . 5
2.2 Reasons for the Poor Performance of RVQs 6
2.3 Methods to Improve RVQ Performance . 6

2.3.1 Brute Force RVQ or Stagewise RVQ (SRVQ) 6
2.3.2 Exhaustive Search RVQ (ESRVQ) 6
2.3.3 Deep Search RVQ . 6
2.3.4 Comparison of SRVQ, DSRVQ, and ESRVQ Encoders 7
2.3.5 Algorithm for Generating Jointly Optimized Codebooks 7
2.3.6 Reflection Symmetric RVQ (rRVQ) 7
2.3.7 Distortion Results and Analysis . 8

REFERENCES . 9

APPENDICES . 10
A List of Edge Vectors . 11

A.1 Definition of an Edge Vector . 11
A.2 Next Codebook Size Description . 11
A.3 Final Set of Codebook Size Descriptions 11

B Another Example Appendix . 17
B.1 Background . 17
B.2 Meat of the Appendix . 17

C Example Appendix with Computer Code . 18

CURRICULUM VITAE . 23

viii

LIST OF TABLES

Table Page

2.1 Performance results of ESRVQ, rRVQ, SRVQ, and DSRVQ of 4x4 vectors
(PSNR in dB). 8

A.1 List of edge vectors for a codebook with b=8 and d=3, for a 4× 4 vector size. 12

A.2 List of edge vectors for a codebook with b=4 and d=3, for a 4× 4 vector size. 13

A.3 List of edge vectors for a codebook with b=16 and d=3, for a 4× 4 vector size. 14

A.4 List of edge vectors for a codebook with b=16 and d=3, for a 2× 2 vector size. 15

A.5 List of edge vectors for a codebook with b=16 and d=3, for a 6× 6 vector size. 16

ix

LIST OF FIGURES

Figure Page

1.1 Binary splitting. 1

1.2 Binary splitting (drawn with TikZ). 2

1.3 Circuit example drawn using circuitikz. 2

1.4 Example figure made with PGFplots. Originally created in Matlab, then ex-
ported using the Matlab2TikZ script (available from Matlab Central). Then
pasted into the LATEX document and edited for style. 4

x

ACRONYMS

BFCS body-fixed coordinate system

CEF composite energy function (related to ILC)

CSOIS Center for Self-Organizing and Intelligent Systems

CV certainty value (related to HIMM)

DOF degree of freedom

EKF extended Kalman filter

FOG fiber optic gyro

FOV field of view of a camera

GAIC geometric Akaike information criterion

GMDL geometric minimum description length criterion

GRO growth rate operator (related to HIMM)

HIMM histogram in-motion mapping

HOSA higher-order spectral analysis (related to Matlab toolbox)

IBO identifier-based observer (related to PDS)

IIC identical initial condition (related to ILC)

ILC iterative learning control

ICS inertial coordinate system

LAO linear approximation-based observer (related to PDS)

LQG linear quadratic Gaussian

LS least squares

LTV linear time-varying

NN neural network

OCS obstacle cluster strength (related to HIMM)

ODIS omni-directional inspection system, a robot at the CSOIS center

ODV omni-directional vehicle

CHAPTER 1

INTRODUCTION

Image compression or image coding is the process of reducing the redundancy in the

image data that may result in some loss of information. Vector quantization (VQ)1 is one

such technique.

1.1 Background

Binary splitting is illustrated in Fig. 1.1.

1 1
j1
i

X Y

Codebook

Codebook

VQ
Stage 1

VQ

Stage 2

Indices

X
1

X
2

Y

jj

Stage 1

Stage 2

1

2
1

i k

j 1
i

+
- -

Fig. 1.1: Binary splitting.

This figure is generated using an open-source figure drawing package (called fig). Any

figure drawing package can be used to generate figures. The easiest format for output is to

output the figures in .pdf format for inclusion in the .tex file.

1The acronym VQ is used as an abbreviation for both vector quantization and vector quantizer.

2

Codebook
Stage 1

VQ
Stage 1

Σ
VQ

Stage 2

Codebook
Stage 2

ji j2k

X1

Y 1
j1i

−
+

X1 − Y 1
j1i X2

Indices

Fig. 1.2: Binary splitting (drawn with TikZ).

−

+

CS

+ −
Vout,ofs

Vout

−
+Vin,ofs

Vin

Fig. 1.3: Circuit example drawn using circuitikz.

There are many other ways to create figures. One package compatible with LATEX is

TikZ. An example is given in Fig. 1.2. This is identical to Fig. 1.1, except that it is done

within the compiling process of LATEX. Another example of a third-party figure package is

given in Fig. 1.3. This circuit was generated using the circuitikz package.

3

It is important that there is no text between figures when they are referenced close

together in the text. They should be “stacked” without text in between as seen above.

A final way of creating graphs is to use a open-sourse package called PGFPlots. An

example of a good-looking graph generated using this package is given in Fig 1.4. Note that

this figure is large enough that it is pushed by LATEX to another page by itself and nicely

centered.

4

0 4 · 10−2 8 · 10−2 0.12 0.16 0.2
10−6

10−5

10−4

10−3

10−2

10−1

100

Tx Pulse amplitude (V)

B
it

E
rr

or
P

ro
b

ab
il

it
y

Uncoded Hard decoded Soft decoded
Uncoded Hard decoded Soft decoded
Uncoded Hard decoded Soft decoded

Fig. 1.4: Example figure made with PGFplots. Originally created in Matlab, then exported
using the Matlab2TikZ script (available from Matlab Central). Then pasted into the LATEX
document and edited for style.

5

CHAPTER 2

RESIDUAL VECTOR QUANTIZATION AND ITS PROBLEMS

2.1 Residual Vector Quantization (RVQ)

A P -stage RVQ consists of a sequence of P single stage Vector Quantizers. Let us

assume that the RVQ is made up of ESVQ stages. Each ESVQ is fully described by the set

{ Aρ, Qρ, P ρ }. The method for designing the ESVQ is given in Algorithm 2.1. Note that

this is the “usual” codebook design algorithm.

Throw in some citations [1–4].

Algorithm 2.1 LBG

Input:
Training vectors (Vt),
Distortion measurement rule d,
Codebook size N ,
Threshold ε

Output:
Codebook Vectors, Cbi

Begin
Select N initial codevectors, Cbi
Do

Begin
Partition Vt
Distprev = Distcurrent /* Dist is the average */
Calculate Distcurrent /* distortion of all the */
Calculate Centroids of N groups of Vt /* training vectors when */
Cbi = Centroid of that group /* partitioned or encoded */

End
while {(Distprev −Distcurrent)/Distprev ≥ ε}

End

6

2.2 Reasons for the Poor Performance of RVQs

d(Xρ, Y ρ
i + Aρ+1 + · · ·+ AP) ≤ d(Xρ, Aρ + Aρ+1 + · · ·+ AP) (2.1)

It can be noticed from the above equation that while the traditional RVQ partitions are

based on the stagewise residues, the optimal RVQ partitions are based on the final residues.

As is evident from (2.1), the optimal codevectors are unique. The equivalent codevectors

are obtained by summing all possible combinations of the codevectors of all stages. These

represent the set of reconstruction vectors possible at the decoder.

2.3 Methods to Improve RVQ Performance

The various methods either suboptimal or optimal used in codebook generation and

in the quantizer (RVQ) implementation are dealt with here. The common goal of all these

methods is to improve the performance of the RVQ.

2.3.1 Brute Force RVQ or Stagewise RVQ (SRVQ)

The new codevectors are obtained by adding the centroids of the stagewise residues

to the old codevectors. This can be done using a random splitting technique or a selective

splitting technique.

2.3.2 Exhaustive Search RVQ (ESRVQ)

ESRVQ is the optimal RVQ described in the previous section. ESRVQ, as the name

suggests, exhaustively searches all the equivalent codevectors as shown in (2.1). Centroids

of the final residues are added to the codevectors during each iteration of the codebook

design, to obtain the new optimal codevectors for the given partition.

2.3.3 Deep Search RVQ

Although ESRVQ is optimal, it needs an exhaustive search encoder. We must be able

to create the encoder using an optimal method.

7

2.3.4 Comparison of SRVQ, DSRVQ, and ESRVQ Encoders

This section compares the different encoders presented previously. The different en-

coders have different performance and complexity, and so must be compared using a common

basis. This is difficult to do, since we must first establish the criteria we will use.

2.3.5 Algorithm for Generating Jointly Optimized Codebooks

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

Some other citations are in [3, 6–14].

2.3.6 Reflection Symmetric RVQ (rRVQ)

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

The structured nature of the rRVQ codebook allows for a reduction of the complexity

of the the implementation.

Binary rRVQ

It was already stated that for the optimal performance of the RVQ, an exhaustive search

encoder must be used. To avoid this in rRVQ the codebook is constrained in such a way

that the nearest neighbor stagewise equivalence classes are simply connected and convex [5].

A reflection symmetry is forced between the stagewise codevectors of the binary rRVQ to

obviate the suboptimality caused by entanglement and overlapping discussed in the previous

8

Table 2.1: Performance results of ESRVQ, rRVQ, SRVQ, and DSRVQ of 4x4 vectors
(PSNR in dB).

No. of SRVQ DSRVQ ESRVQ rRVQ

Stages bps Unopt JO Initial JO Initial JO Initial JO

chapter. Barnes et al. derived the optimality conditions for the rRVQ quantitatively [5].

They stated their results as follows [5, pp. 3–4]:

“The difficulty in achieving optimality is that it is difficult. We observed
that it was necessary to look at the conditions for optimality before we could
proceed. We then proceeded with caution.

Having proceeded, we applied the conditions for optimality. To our amaze-
ment, we found our results were optimal.”

2.3.7 Distortion Results and Analysis

Table 2.1 gives the PSNR in dB of the reconstructed test image, compressed (encoded

and decoded) using the codebooks generated by SRVQ.

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

It is important to recognize at this point, that rRVQ is a suboptimal method for

covering the vector space. It is therefore important to make sure that the best possible

vectors are chosen for the codebook.

9

REFERENCES

[1] B. Shucker, “A ground-based prototype of a CMOS navigational star camera for small
satellite applications,” in Proc. AIAA/Utah State University Conference on Small
Satellites, Aug. 2001, pp. 26–30.

[2] T. Brady, C. Tillier, R. Brown, A. Jimenez, and A. Kourepenis, “The inertial stellar
compass: A new direction in spacecraft attitude determination,” in Proc. AIAA/Utah
State University Conference on Small Satellites, Aug. 2002, pp. 21–25.

[3] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal
Processing. Upper Saddle River, NJ: Prentice Hall, 2000, ch. 13, pp. 591–620.

[4] I. Y. Bar-Itzhack and Y. Oshman, “Attitude determination from vector observations:
Quaternion estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-21, pp. 128–
135, 1985.

[5] C. F. Barnes and R. L. Frost, “Residual vector quantizers with jointly optimized code
books,” Advances in Electronics and Electron Physics, vol. 84, pp. 1–59, 1992.

[6] R. L. Baker and R. M. Gray, “Image compression using non-adaptive spatial vector
quantization,” in Proc. 16th Asilomar Conf. on Circuits, Systems and Computers, Oct.
1982, pp. 55–61.

[7] C. F. Barnes and R. L. Frost, “Residual vector quantizers with jointly optimized code
books,” in Image Mathematics and Image Processing, ser. Image Coding, P. W. Hawkes,
Ed. Academic Press, 1993, pp. 57–69.

[8] C. F. Barnes, “Residual quantizers,” Ph.D. dissertation, Brigham Young University,
Provo, UT, 1989.

[9] Analog Devices. (2000) 9851 DDS synthesizer. [Online]. Available: ftp://ftp.
onsetcomp.com/Public/TattleTale/

[10] M. K. Ng, H. Shen, S. Chaudhuri, and A. C. Yau, “Zoom-based super-resolution
reconstruction approach using prior total variation,” Opt. Eng., vol. 46, no. 12, 127003
2007. [Online]. Available: http://dx.doi.org/10.1117/1.2818797

[11] B. L. Stringham, “RVQ gotchas,” Aug. 2000, Private Communication.

[12] T. C. Cournane and C. F. McSweeney, “Level measurement for storage silos,” U.S.
Patent 4,807,471, Feb. 21, 1989.

[13] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1971.

[14] C.-M. Huang, “Codebook generation for vector quantization image compression,” Mas-
ter’s thesis, Utah State University, Logan, UT, 1988.

ftp://ftp.onsetcomp.com/Public/TattleTale/
ftp://ftp.onsetcomp.com/Public/TattleTale/
http://dx.doi.org/10.1117/1.2818797

10

APPENDICES

11

APPENDIX A

List of Edge Vectors

A.1 Definition of an Edge Vector

Before we list the table of edge vectors, we need to describe what an edge vector is. In

this section we will describe in detail the theory that results in the edge vectors. The first

set of edge vectors is given in Table A.1.

A.2 Next Codebook Size Description

In this section we do the next size codebook. This is different from the previous case

in that the codebook size is different. The next set of edge vectors is given in Table A.2.

A.3 Final Set of Codebook Size Descriptions

The following three tables contain the data for codebook sizes that are different than

the previous sizes. We note that the differences in the tables are due to the differences in

the sizes of the codebook edge vectors. Note the values given in Table A.3 – Table A.5.

12

Table A.1: List of edge vectors for a codebook with b=8 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(5)

L1 (6)

(7)

(3,1)

(3,2)

(3,5)

(4,0)

L2 (4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(3,4,1)

(3,4,2)

(3,7,0)

(3,7,2)

(3,7,4)

L3 (4,1,0)

(4,1,1)

(4,1,2)

(4,1,3)

(4,1,4)

(4,1,5)

(4,1,6)

13

Table A.2: List of edge vectors for a codebook with b=4 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(1)

L1 (2)

(3)

L2 (0,3)

(0,2,0)

L3 (0,2,2)

(0,2,3)

14

Table A.3: List of edge vectors for a codebook with b=16 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(11)

(12)

L1 (13)

(14)

(15)

(7,0)

(7,1)

(7,2)

(7,6)

L2 (8,4)

(8,5)

(8,6)

(9,6)

(9,14)

(10,1)

(4,6,14)

(5,6,6)

(6,14,0)

(6,14,3)

L3 (6,14,4)

(6,14,5)

(7,7,0)

(7,14,7)

(9,5,3)

(9,5,10)

(9,5,11)

15

Table A.4: List of edge vectors for a codebook with b=16 and d=3, for a 2× 2 vector size.

Level Edge Vectors

(9)

(10)

L1 (11)

(12)

(13)

L2 (6,0)

(6,3)

(2,2,8)

(6,5,1)

(6,5,4)

(6,5,6)

(6,5,7)

(6,5,8)

L3 (6,5,15)

(7,0,14)

(8,0,1)

(8,15,3)

(8,15,4)

(8,15,10)

16

Table A.5: List of edge vectors for a codebook with b=16 and d=3, for a 6× 6 vector size.

Level Edge Vectors

(6)

(7)

(8)

(9)

L1 (10)

(11)

(12)

(13)

(14)

(15)

(2,8)

(2,13)

(4,1)

(4,6)

L2 (4,7)

(4,8)

(4,10)

(4,11)

(4,13)

(4,15)

(1,7,0)

(1,7,1)

(1,7,2)

L3 (1,7,3)

(1,7,4)

(1,7,6)

(1,7,9)

(1,7,12)

17

APPENDIX B

Another Example Appendix

B.1 Background

Some random appended text for this section of the appendix....

B.2 Meat of the Appendix

Here we have the data that is so important to be included in this appendix.

18

APPENDIX C

Example Appendix with Computer Code

#include "ISATLib.hch"

/***

Macro Proc: pipe_divide_uints

Arguments

x Dividend.

y Divisor.

val Pointer to the result.

fracBitsOut Number of bits in the fraction of the fixed-point quotient.

Description

Takes two signed integer inputs in any (non-Celoxica) fixed-point

representation and finds their quotient. The number of fractional bits in

the signed output is user specified. This is pipelined at one clock per pair

with latency fracBitsOut+width(x)+2.

**/

macro proc

pipe_divide_uints(x,y,val,fracBitsOut)

{

FLAG shift_sign[(width(x)+fracBitsOut)+1];

unsigned (log2ceil(width(x)+1)+1) shift[(width(x)+fracBitsOut)+1];

unsigned diff[(width(x)+fracBitsOut)+1];

19

unsigned divisor[(width(x)+fracBitsOut)+1];

unsigned quotient[(width(x)+fracBitsOut)+1];

int in_shifts;

unsigned in_divisor,in_divisor0,in_diff,in_diff0;

unsigned (log2ceil(width(x)+1)) msb_dividend,msb_divisor;

macro expr ext(p) = (int)((unsigned 1)0 @ p);

// Macro to find the number integer bits in the output. This macro produces an

// log2ceil(width(dividend1)+1) bit int.

macro expr int_shift(dividend1,divisor1) = ((dividend1 != 0)?

(int)(lmo((unsigned 1)0 @ dividend1)) : (int)0) - (int)(lmo((unsigned 1)0 @

divisor1));

par

{

// Clock 0

// Extendthe precision of the operands.

in_divisor0 = y @ (unsigned (fracBitsOut))0;

in_diff0 = x @ (unsigned (fracBitsOut))0;

// Find shifts necessary to align MSBs.

msb_dividend = (x != 0)? lmo(((unsigned 1)0 @ x)) : 0;

msb_divisor = lmo(((unsigned 1)0 @ y));

// Clock 1

// Compute the total shift for the divisor to align MSBs.

in_shifts = ext(msb_dividend) - ext(msb_divisor);

in_divisor = in_divisor0;

in_diff = in_diff0;

20

// Clocks 2 to (fracBitsOut+width(x)+2)

par(i=0 ; i <= (fracBitsOut+width(x)) ; i++){

ifselect(i == 0){

par

{

quotient[i] = 0;

// Shift the divisor to align MSBs.

if(in_shifts > 0){

divisor[i] = in_divisor << (unsigned)in_shifts;

} else {

divisor[i] = in_divisor >> (unsigned) -in_shifts;

}

// Set the total number of shifts needed to find the quotient.

shift[i] = (unsigned) (in_shifts + adjs((int)fracBitsOut,(log2ceil(width(

x)+1)+1)));

diff[i] = in_diff;

shift_sign[i] = sign(in_shifts + adjs((int)fracBitsOut,(log2ceil(width(x)

+1)+1)));

}

} else ifselect(i == (fracBitsOut+width(x))){

if(shift_sign[i-1] == 0){

// Find LSB of result.

if((diff[i-1] >= divisor[i-1]) && (divisor[i-1] != 0)){

*val = quotient[i-1] | 1;

} else {

*val = quotient[i-1];

21

}

} else

// We are (effectively) dividing by zero; set the output to the dividend.

*val = diff[i-1] @ 0;

//*val = 0;

} else {

if((shift[i-1] != 0) && (shift_sign[i-1] == 0)){

par

{

if((diff[i-1] >= divisor[i-1]) && (divisor[i-1] != 0)){

// Subtract off the shifted devisor and set an output bit.

par

{

quotient[i] = (quotient[i-1] | 1) << 1;

diff[i] = diff[i-1] - divisor[i-1];

}

} else {

par

{

// Clear an output bit.

quotient[i] = quotient[i-1] << 1;

diff[i] = diff[i-1];

}

}

divisor[i] = divisor[i-1] >> 1;

22

shift[i] = shift[i-1] - 1;

shift_sign[i] = shift_sign[i-1];

}

} else {

// The quotent is computed; keep the values in the pipe.

par

{

quotient[i] = quotient[i-1];

diff[i] = diff[i-1];

divisor[i] = divisor[i-1];

shift[i] = shift[i-1];

shift_sign[i] = shift_sign[i-1];

}

}

}

}

}

}

23

CURRICULUM VITAE

John Q. Engineer

Published Journal Articles

• Rational Radial Distortion Models of Camera Lenses with Analytical Solution for

Distortion Correction, Lili Ma, YangQuan Chen, and Kevin L. Moore, International

Journal of Information Acquisition, Accepted.

• A Small Mobile Robot for Security and Inspection Operations, N.S. Flann, K. L.

Moore, and Lili Ma, Control Engineering Practice, vol. 10, pp. 1265-1270, 2002.

Published Conference Papers

• Range Identification for Perspective Dynamic Systems Using Linear Approximation,

Lili Ma, YangQuan Chen, and Kevin L. Moore, in Proc. IEEE Int. Conf. on Robotics

and Automation (ICRA), 2004.

• Range Identification for Perspective Dynamic System with Single Homogeneous Ob-

servation, Lili Ma, YangQuan Chen, and Kevin L. Moore, in Proc. IEEE Int. Conf.

on Robotics and Automation (ICRA), 2004.

• Blind Detection and Compensation of Camera Lens Geometrical Distortions, Lili Ma

and YangQuan Chen, SIAM Imaging Science, 2004.

• Flexible Camera Calibration Using a New Analytical Radial Undistortion Formula

with Application to Mobile Robot Localization, Lili Ma, YangQuan Chen, and Kevin

L. Moore, in Proc. Int. Symposium on Intelligent Control (ISIC), 2003.

24

• Sonar and Laser Based HIMM Map Building for Collision Avoidance for Mobile

Robots, Lili Ma and Kevin L. Moore, in Proc. International Symposium on Intel-

ligent Control (ISIC), 2003.

• Wireless Visual Servoing for ODIS - An Under Car Inspection Mobile Robot, Lili Ma,

Matthew Berkemeier, YangQuan Chen, Morgan Davidson, Vikas Bahl, and Kevin L.

Moore, in Proc. IFAC World Congress, Spain, July, 2002.

• Visual Servoing of an Omni-Directional Mobile Robot for Alignment with Parking Lot

Lines, Matthew Berkemeier, Morgan Davidson, Vikas Bahl, YangQuan Chen, and Lili

Ma, in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), May 2002.

• Some Sensing and Perception Techniques for an Omnidirectional Ground Vehicle with

a Laser Scanner, Zhen Song, YangQuan Chen, Lili Ma, and You Chung Chung, in

Proc. IEEE Int. Symposium on Intelligent Control (ISIC), October 2002.

• A Small Mobile Robot For Security and Inspection Operations, Flann NS, Moore KL,

and Ma L, in Proc. IFAC Conference on Telematics Applications in Automation and

Robotics, July 2001.

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background

	RESIDUAL VECTOR QUANTIZATION AND ITS PROBLEMS
	Residual Vector Quantization (RVQ)
	Reasons for the Poor Performance of RVQs
	Methods to Improve RVQ Performance
	Brute Force RVQ or Stagewise RVQ (SRVQ)
	Exhaustive Search RVQ (ESRVQ)
	Deep Search RVQ
	Comparison of SRVQ, DSRVQ, and ESRVQ Encoders
	Algorithm for Generating Jointly Optimized Codebooks
	Reflection Symmetric RVQ (rRVQ)
	Distortion Results and Analysis

	REFERENCES
	APPENDICES
	A List of Edge Vectors
	Definition of an Edge Vector
	Next Codebook Size Description
	Final Set of Codebook Size Descriptions

	B Another Example Appendix
	Background
	Meat of the Appendix

	C Example Appendix with Computer Code

	CURRICULUM VITAE

