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CHAPTER 1

INTRODUCTION

Image compression or image coding is the process of reducing the redundancy in the

image data that may result in some loss of information. Vector quantization (VQ)1 is one

such technique.

1.1 Background

Binary splitting is illustrated in Fig. 1.1.
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Fig. 1.1: Binary splitting.

This figure is generated using an open-source figure drawing package (called fig). Any

figure drawing package can be used to generate figures. The easiest format for output is to

output the figures in .pdf format for inclusion in the .tex file.

1The acronym VQ is used as an abbreviation for both vector quantization and vector quantizer.
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Fig. 1.2: Binary splitting (drawn with TikZ).
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Fig. 1.3: Circuit example drawn using circuitikz.

There are many other ways to create figures. One package compatible with LATEX is

TikZ. An example is given in Fig. 1.2. This is identical to Fig. 1.1, except that it is done

within the compiling process of LATEX. Another example of a third-party figure package is

given in Fig. 1.3. This circuit was generated using the circuitikz package.
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It is important that there is no text between figures when they are referenced close

together in the text. They should be “stacked” without text in between as seen above.

A final way of creating graphs is to use a open-sourse package called PGFPlots. An

example of a good-looking graph generated using this package is given in Fig 1.4. Note that

this figure is large enough that it is pushed by LATEX to another page by itself and nicely

centered.
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Fig. 1.4: Example figure made with PGFplots. Originally created in Matlab, then exported
using the Matlab2TikZ script (available from Matlab Central). Then pasted into the LATEX
document and edited for style.
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CHAPTER 2

RESIDUAL VECTOR QUANTIZATION AND ITS PROBLEMS

2.1 Residual Vector Quantization (RVQ)

A P -stage RVQ consists of a sequence of P single stage Vector Quantizers. Let us

assume that the RVQ is made up of ESVQ stages. Each ESVQ is fully described by the set

{ Aρ, Qρ, P ρ }. The method for designing the ESVQ is given in Algorithm 2.1. Note that

this is the “usual” codebook design algorithm.

Throw in some citations [1–4].

Algorithm 2.1 LBG

Input:
Training vectors (Vt),
Distortion measurement rule d,
Codebook size N ,
Threshold ε

Output:
Codebook Vectors, Cbi

Begin
Select N initial codevectors, Cbi
Do

Begin
Partition Vt
Distprev = Distcurrent /* Dist is the average */
Calculate Distcurrent /* distortion of all the */
Calculate Centroids of N groups of Vt /* training vectors when */
Cbi = Centroid of that group /* partitioned or encoded */

End
while {(Distprev −Distcurrent)/Distprev ≥ ε}

End



6

2.2 Reasons for the Poor Performance of RVQs

d(Xρ, Y ρ
i + Aρ+1 + · · ·+ AP ) ≤ d(Xρ, Aρ + Aρ+1 + · · ·+ AP ) (2.1)

It can be noticed from the above equation that while the traditional RVQ partitions are

based on the stagewise residues, the optimal RVQ partitions are based on the final residues.

As is evident from (2.1), the optimal codevectors are unique. The equivalent codevectors

are obtained by summing all possible combinations of the codevectors of all stages. These

represent the set of reconstruction vectors possible at the decoder.

2.3 Methods to Improve RVQ Performance

The various methods either suboptimal or optimal used in codebook generation and

in the quantizer (RVQ) implementation are dealt with here. The common goal of all these

methods is to improve the performance of the RVQ.

2.3.1 Brute Force RVQ or Stagewise RVQ (SRVQ)

The new codevectors are obtained by adding the centroids of the stagewise residues

to the old codevectors. This can be done using a random splitting technique or a selective

splitting technique.

2.3.2 Exhaustive Search RVQ (ESRVQ)

ESRVQ is the optimal RVQ described in the previous section. ESRVQ, as the name

suggests, exhaustively searches all the equivalent codevectors as shown in (2.1). Centroids

of the final residues are added to the codevectors during each iteration of the codebook

design, to obtain the new optimal codevectors for the given partition.

2.3.3 Deep Search RVQ

Although ESRVQ is optimal, it needs an exhaustive search encoder. We must be able

to create the encoder using an optimal method.
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2.3.4 Comparison of SRVQ, DSRVQ, and ESRVQ Encoders

This section compares the different encoders presented previously. The different en-

coders have different performance and complexity, and so must be compared using a common

basis. This is difficult to do, since we must first establish the criteria we will use.

2.3.5 Algorithm for Generating Jointly Optimized Codebooks

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

Some other citations are in [3, 6–14].

2.3.6 Reflection Symmetric RVQ (rRVQ)

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

The structured nature of the rRVQ codebook allows for a reduction of the complexity

of the the implementation.

Binary rRVQ

It was already stated that for the optimal performance of the RVQ, an exhaustive search

encoder must be used. To avoid this in rRVQ the codebook is constrained in such a way

that the nearest neighbor stagewise equivalence classes are simply connected and convex [5].

A reflection symmetry is forced between the stagewise codevectors of the binary rRVQ to

obviate the suboptimality caused by entanglement and overlapping discussed in the previous
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Table 2.1: Performance results of ESRVQ, rRVQ, SRVQ, and DSRVQ of 4x4 vectors
(PSNR in dB).

No. of SRVQ DSRVQ ESRVQ rRVQ

Stages bps Unopt JO Initial JO Initial JO Initial JO

chapter. Barnes et al. derived the optimality conditions for the rRVQ quantitatively [5].

They stated their results as follows [5, pp. 3–4]:

“The difficulty in achieving optimality is that it is difficult. We observed
that it was necessary to look at the conditions for optimality before we could
proceed. We then proceeded with caution.

Having proceeded, we applied the conditions for optimality. To our amaze-
ment, we found our results were optimal.”

2.3.7 Distortion Results and Analysis

Table 2.1 gives the PSNR in dB of the reconstructed test image, compressed (encoded

and decoded) using the codebooks generated by SRVQ.

The ESRVQ is not instrumentable and the DSRVQ does not use a tree-structured

encoder. Hence Barnes et al. proposed the reflection symmetric RVQ or the rRVQ [5]. The

rRVQ uses a tree-structured encoder similar to SRVQ although it differs from the traditional

RVQ or the SRVQ encoder in that it is slightly more complex. The rRVQ codebook is also

more structured than the traditional RVQ.

It is important to recognize at this point, that rRVQ is a suboptimal method for

covering the vector space. It is therefore important to make sure that the best possible

vectors are chosen for the codebook.
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APPENDIX A

List of Edge Vectors

A.1 Definition of an Edge Vector

Before we list the table of edge vectors, we need to describe what an edge vector is. In

this section we will describe in detail the theory that results in the edge vectors. The first

set of edge vectors is given in Table A.1.

A.2 Next Codebook Size Description

In this section we do the next size codebook. This is different from the previous case

in that the codebook size is different. The next set of edge vectors is given in Table A.2.

A.3 Final Set of Codebook Size Descriptions

The following three tables contain the data for codebook sizes that are different than

the previous sizes. We note that the differences in the tables are due to the differences in

the sizes of the codebook edge vectors. Note the values given in Table A.3 – Table A.5.
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Table A.1: List of edge vectors for a codebook with b=8 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(5)

L1 (6)

(7)

(3,1)

(3,2)

(3,5)

(4,0)

L2 (4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(3,4,1)

(3,4,2)

(3,7,0)

(3,7,2)

(3,7,4)

L3 (4,1,0)

(4,1,1)

(4,1,2)

(4,1,3)

(4,1,4)

(4,1,5)

(4,1,6)
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Table A.2: List of edge vectors for a codebook with b=4 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(1)

L1 (2)

(3)

L2 (0,3)

(0,2,0)

L3 (0,2,2)

(0,2,3)
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Table A.3: List of edge vectors for a codebook with b=16 and d=3, for a 4× 4 vector size.

Level Edge Vectors

(11)

(12)

L1 (13)

(14)

(15)

(7,0)

(7,1)

(7,2)

(7,6)

L2 (8,4)

(8,5)

(8,6)

(9,6)

(9,14)

(10,1)

(4,6,14)

(5,6,6)

(6,14,0)

(6,14,3)

L3 (6,14,4)

(6,14,5)

(7,7,0)

(7,14,7)

(9,5,3)

(9,5,10)

(9,5,11)
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Table A.4: List of edge vectors for a codebook with b=16 and d=3, for a 2× 2 vector size.

Level Edge Vectors

(9)

(10)

L1 (11)

(12)

(13)

L2 (6,0)

(6,3)

(2,2,8)

(6,5,1)

(6,5,4)

(6,5,6)

(6,5,7)

(6,5,8)

L3 (6,5,15)

(7,0,14)

(8,0,1)

(8,15,3)

(8,15,4)

(8,15,10)
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Table A.5: List of edge vectors for a codebook with b=16 and d=3, for a 6× 6 vector size.

Level Edge Vectors

(6)

(7)

(8)

(9)

L1 (10)

(11)

(12)

(13)

(14)

(15)

(2,8)

(2,13)

(4,1)

(4,6)

L2 (4,7)

(4,8)

(4,10)

(4,11)

(4,13)

(4,15)

(1,7,0)

(1,7,1)

(1,7,2)

L3 (1,7,3)

(1,7,4)

(1,7,6)

(1,7,9)

(1,7,12)
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APPENDIX B

Another Example Appendix

B.1 Background

Some random appended text for this section of the appendix....

B.2 Meat of the Appendix

Here we have the data that is so important to be included in this appendix.



18

APPENDIX C

Example Appendix with Computer Code

#include "ISATLib.hch"

/*****************************************************************************

Macro Proc: pipe_divide_uints

Arguments

x Dividend.

y Divisor.

val Pointer to the result.

fracBitsOut Number of bits in the fraction of the fixed-point quotient.

Description

Takes two signed integer inputs in any (non-Celoxica) fixed-point

representation and finds their quotient. The number of fractional bits in

the signed output is user specified. This is pipelined at one clock per pair

with latency fracBitsOut+width(x)+2.

******************************************************************************/

macro proc

pipe_divide_uints(x,y,val,fracBitsOut)

{

FLAG shift_sign[(width(x)+fracBitsOut)+1];

unsigned (log2ceil(width(x)+1)+1) shift[(width(x)+fracBitsOut)+1];

unsigned diff[(width(x)+fracBitsOut)+1];
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unsigned divisor[(width(x)+fracBitsOut)+1];

unsigned quotient[(width(x)+fracBitsOut)+1];

int in_shifts;

unsigned in_divisor,in_divisor0,in_diff,in_diff0;

unsigned (log2ceil(width(x)+1)) msb_dividend,msb_divisor;

macro expr ext(p) = (int)((unsigned 1)0 @ p);

// Macro to find the number integer bits in the output. This macro produces an

// log2ceil(width(dividend1)+1) bit int.

macro expr int_shift(dividend1,divisor1) = ((dividend1 != 0)?

(int)(lmo((unsigned 1)0 @ dividend1)) : (int)0) - (int)(lmo((unsigned 1)0 @

divisor1));

par

{

// Clock 0

// Extendthe precision of the operands.

in_divisor0 = y @ (unsigned (fracBitsOut))0;

in_diff0 = x @ (unsigned (fracBitsOut))0;

// Find shifts necessary to align MSBs.

msb_dividend = (x != 0)? lmo(((unsigned 1)0 @ x)) : 0;

msb_divisor = lmo(((unsigned 1)0 @ y));

// Clock 1

// Compute the total shift for the divisor to align MSBs.

in_shifts = ext(msb_dividend) - ext(msb_divisor);

in_divisor = in_divisor0;

in_diff = in_diff0;
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// Clocks 2 to (fracBitsOut+width(x)+2)

par(i=0 ; i <= (fracBitsOut+width(x)) ; i++){

ifselect(i == 0){

par

{

quotient[i] = 0;

// Shift the divisor to align MSBs.

if(in_shifts > 0){

divisor[i] = in_divisor << (unsigned)in_shifts;

} else {

divisor[i] = in_divisor >> (unsigned) -in_shifts;

}

// Set the total number of shifts needed to find the quotient.

shift[i] = (unsigned) (in_shifts + adjs((int)fracBitsOut,(log2ceil(width(

x)+1)+1)));

diff[i] = in_diff;

shift_sign[i] = sign(in_shifts + adjs((int)fracBitsOut,(log2ceil(width(x)

+1)+1)));

}

} else ifselect(i == (fracBitsOut+width(x))){

if(shift_sign[i-1] == 0){

// Find LSB of result.

if((diff[i-1] >= divisor[i-1]) && (divisor[i-1] != 0)){

*val = quotient[i-1] | 1;

} else {

*val = quotient[i-1];
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}

} else

// We are (effectively) dividing by zero; set the output to the dividend.

*val = diff[i-1] @ 0;

//*val = 0;

} else {

if((shift[i-1] != 0) && (shift_sign[i-1] == 0)){

par

{

if((diff[i-1] >= divisor[i-1]) && (divisor[i-1] != 0)){

// Subtract off the shifted devisor and set an output bit.

par

{

quotient[i] = (quotient[i-1] | 1) << 1;

diff[i] = diff[i-1] - divisor[i-1];

}

} else {

par

{

// Clear an output bit.

quotient[i] = quotient[i-1] << 1;

diff[i] = diff[i-1];

}

}

divisor[i] = divisor[i-1] >> 1;
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shift[i] = shift[i-1] - 1;

shift_sign[i] = shift_sign[i-1];

}

} else {

// The quotent is computed; keep the values in the pipe.

par

{

quotient[i] = quotient[i-1];

diff[i] = diff[i-1];

divisor[i] = divisor[i-1];

shift[i] = shift[i-1];

shift_sign[i] = shift_sign[i-1];

}

}

}

}

}

}
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